Cell-Based Reporter System for High-Throughput Screening of MicroRNA Pathway Inhibitors and Its Limitations
نویسندگان
چکیده
MicroRNAs (miRNAs) are small RNAs repressing gene expression. They contribute to many physiological processes and pathologies. Consequently, strategies for manipulation of the miRNA pathway are of interest as they could provide tools for experimental or therapeutic interventions. One of such tools could be small chemical compounds identified through high-throughput screening (HTS) with reporter assays. While a number of chemical compounds have been identified in such high-throughput screens, their application potential remains elusive. Here, we report our experience with cell-based HTS of a library of 12,816 chemical compounds to identify miRNA pathway modulators. We used human HeLa and mouse NIH 3T3 cell lines with stably integrated or transiently expressed luciferase reporters repressed by endogenous miR-30 and let-7 miRNAs and identified 163 putative miRNA inhibitors. We report that compounds relieving miRNA-mediated repression via stress induction are infrequent; we have found only two compounds that reproducibly induced stress granules and relieved miRNA-targeted reporter repression. However, we have found that this assay type readily yields non-specific (miRNA-independent) stimulators of luciferase reporter activity. Furthermore, our data provide partial support for previously published miRNA pathway modulators; the most notable intersections were found among anthracyclines, dopamine derivatives, flavones, and stilbenes. Altogether, our results underscore the importance of appropriate negative controls in development of small compound inhibitors of the miRNA pathway. This particularly concerns validation strategies, which would greatly profit from assays that fundamentally differ from the routinely employed miRNA-targeted reporter assays.
منابع مشابه
A novel medium-throughput biological assay system for HTLV-1 infectivity and drug discovery
Objective(s): Here, a reporter cell line containing two reporter vectors were developed, in order to monitor the Human T-Lymphotropic Virus type1(HTLV-1) infectivity and the cell viability simultaneously. Materials and Methods: The reporter cell line was constructed by stably transfected baby hamster's kidney cell line (BHK-21), with the genomes expressing two different reporters in separate pl...
متن کاملQuantitative Cell-based Protein Degradation Assays to Identify and Classify Drugs That Target the Ubiquitin-Proteasome System*
We have generated a set of dual-reporter human cell lines and devised a chase protocol to quantify proteasomal degradation of a ubiquitin fusion degradation (UFD) substrate, a ubiquitin ligase CRL2(VHL) substrate, and a ubiquitin-independent substrate. Well characterized inhibitors that target different aspects of the ubiquitin-proteasome system can be distinguished by their distinctive pattern...
متن کاملتولید هورمون رشد انسانی نوترکیب توسط سلول تخمدان هامستر چینی و بررسی فعالیت زیستی آن به روش سنجش گزارشگر ژنی
Background: Cultivated mammalian cells, because of their capacity for proper protein folding, assembly and post–translational modification, have become the dominant system for production of recombinant proteins in clinical application. Therefore, the quality and efficacy of protein can be superior when expressed in mammalian cells compared to other hosts such as bacteria. Gene reporte...
متن کاملFDA approved drugs repurposing of Toll-like receptor4 (TLR4) candidate for neuropathy
Accumulating evidence indicates that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and are definitively involved in the expansion and maintenance of the neuropathic pain. However, the application of docking in virtual-screening in silico methods to drug discovery has some challenge but it allows us to make the directed and meaningful design of drugs fo...
متن کاملIdentification of Novel Inhibitors of the Type I Interferon Induction Pathway Using Cell-Based High-Throughput Screening
Production of type I interferon (IFN) is an essential component of the innate immune response against invading pathogens. However, its production must be tightly regulated to avoid harmful effects. Compounds that modulate the IFN response are potentially valuable for a variety of applications due to IFN's beneficial and detrimental roles. We developed and executed a cell-based high-throughput s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018